Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Rigid geometric structures, isometric actions, and algebraic quotients (1005.1423v2)

Published 9 May 2010 in math.DG

Abstract: By using a Borel density theorem for algebraic quotients, we prove a theorem concerning isometric actions of a Lie group $G$ on a smooth or analytic manifold $M$ with a rigid $\mathrm{A}$-structure $\sigma$. It generalizes Gromov's centralizer and representation theorems to the case where $R(G)$ is split solvable and $G/R(G)$ has no compact factors, strengthens a special case of Gromov's open dense orbit theorem, and implies that for smooth $M$ and simple $G$, if Gromov's representation theorem does not hold, then the local Killing fields on $\widetilde{M}$ are highly non-extendable. As applications of the generalized centralizer and representation theorems, we prove (1) a structural property of $\mathrm{Iso}(M)$ for simply connected compact analytic $M$ with unimodular $\sigma$, (2) three results illustrating the phenomena that if $G$ is split solvable and large then $\pi_1(M)$ is also large, and (3) two fixed point theorems for split solvable $G$ and compact analytic $M$ with non-unimodular $\sigma$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.