Papers
Topics
Authors
Recent
Search
2000 character limit reached

Irreducible Modules over Khovanov-Lauda-Rouquier Algebras of type $A_n$ and Semistandard Tableaux

Published 9 May 2010 in math.RT | (1005.1373v3)

Abstract: Using combinatorics of Young tableaux, we give an explicit construction of irreducible graded modules over Khovanov-Lauda-Rouquier algebras $R$ and their cyclotomic quotients $R{\lambda}$ of type $A_{n}$. Our construction is compatible with crystal structure. Let ${\mathbf B}(\infty)$ and ${\mathbf B}(\lambda)$ be the $U_q(\slm_{n+1})$-crystal consisting of marginally large tableaux and semistandard tableaux of shape $\lambda$, respectively. On the other hand, let ${\mathfrak B}(\infty)$ and ${\mathfrak B}(\lambda)$ be the $U_q(\slm_{n+1})$-crystals consisting of isomorphism classes of irreducible graded $R$-modules and $R{\lambda}$-modules, respectively. We show that there exist explicit crystal isomorphisms $\Phi_{\infty}: {\mathbf B}(\infty) \overset{\sim} \longrightarrow {\mathfrak B}(\infty)$ and $\Phi_{\lambda}: {\mathbf B}(\lambda) \overset{\sim} \longrightarrow {\mathfrak B}(\lambda)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.