Papers
Topics
Authors
Recent
2000 character limit reached

Detrending moving average algorithm for multifractals

Published 6 May 2010 in q-fin.ST, physics.comp-ph, physics.data-an, and q-fin.PM | (1005.0877v2)

Abstract: The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of non-stationary time series and the long-range correlations of fractal surfaces, which contains a parameter $\theta$ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-dimensional multifractals, which is a generalization of the DMA method. The performance of the one-dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with analytical solutions for backward ($\theta=0$), centered ($\theta=0.5$), and forward ($\theta=1$) detrending windows. We find that the estimated multifractal scaling exponent $\tau(q)$ and the singularity spectrum $f(\alpha)$ are in good agreement with the theoretical values. In addition, the backward MFDMA method has the best performance, which provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outperforms the multifractal detrended fluctuation analysis (MFDFA). The one-dimensional backward MFDMA method is applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature is confirmed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.