On the Hausdorff volume in sub-Riemannian geometry
Abstract: For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume. We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C3 (and C4 on every smooth curve) but in general not C5. These results answer to a question addressed by Montgomery about the relation between two intrinsic volumes that can be defined in a sub-Riemannian manifold, namely the Popp and the Hausdorff volume. If the nilpotent approximation depends on the point (that may happen starting from dimension 5), then they are not proportional, in general.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.