Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Biharmonic functions on groups and limit theorems for quasimorphisms along random walks (1005.0077v2)

Published 1 May 2010 in math.GR and math.PR

Abstract: We show for very general classes of measures on locally compact second countable groups that every Borel measurable quasimorphism is at bounded distance from a quasi-biharmonic one. This allows us to deduce non-degenerate central limit theorems and laws of the iterated logarithm for such quasimorphisms along regular random walks on topological groups using classical martingale limit theorems of Billingsley and Stout. For quasi-biharmonic quasimorphism on countable groups we also obtain integral representations using martingale convergence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.