Papers
Topics
Authors
Recent
Search
2000 character limit reached

Matrix Coherence and the Nystrom Method

Published 12 Apr 2010 in cs.AI | (1004.2008v1)

Abstract: The Nystrom method is an efficient technique to speed up large-scale learning applications by generating low-rank approximations. Crucial to the performance of this technique is the assumption that a matrix can be well approximated by working exclusively with a subset of its columns. In this work we relate this assumption to the concept of matrix coherence and connect matrix coherence to the performance of the Nystrom method. Making use of related work in the compressed sensing and the matrix completion literature, we derive novel coherence-based bounds for the Nystrom method in the low-rank setting. We then present empirical results that corroborate these theoretical bounds. Finally, we present more general empirical results for the full-rank setting that convincingly demonstrate the ability of matrix coherence to measure the degree to which information can be extracted from a subset of columns.

Citations (86)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.