Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Automatic Index Tuning: Keeping DBAs in the Loop (1004.1249v6)

Published 8 Apr 2010 in cs.DB

Abstract: To obtain good system performance, a DBA must choose a set of indices that is appropriate for the workload. The system can aid in this challenging task by providing recommendations for the index configuration. We propose a new index recommendation technique, termed semi-automatic tuning, that keeps the DBA "in the loop" by generating recommendations that use feedback about the DBA's preferences. The technique also works online, which avoids the limitations of commercial tools that require the workload to be known in advance. The foundation of our approach is the Work Function Algorithm, which can solve a wide variety of online optimization problems with strong competitive guarantees. We present an experimental analysis that validates the benefits of semi-automatic tuning in a wide variety of conditions.

Citations (48)

Summary

We haven't generated a summary for this paper yet.