Context-Oriented Web Video Tag Recommendation
Abstract: Tag recommendation is a common way to enrich the textual annotation of multimedia contents. However, state-of-the-art recommendation methods are built upon the pair-wised tag relevance, which hardly capture the context of the web video, i.e., when who are doing what at where. In this paper we propose the context-oriented tag recommendation (CtextR) approach, which expands tags for web videos under the context-consistent constraint. Given a web video, CtextR first collects the multi-form WWW resources describing the same event with the video, which produce an informative and consistent context; and then, the tag recommendation is conducted based on the obtained context. Experiments on an 80,031 web video collection show CtextR recommends various relevant tags to web videos. Moreover, the enriched tags improve the performance of web video categorization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.