Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification of Vector-Valued modular Forms of Dimension less than Six

Published 22 Mar 2010 in math.NT, hep-th, and math.QA | (1003.4111v1)

Abstract: The first half of this dissertation reviews the basic notion of vector-valued modular forms and its connection to differential equations. The main purpose of the dissertation is to classify spaces of vector-valued modular forms associated to irreducible, T-unitarizable representations of the full modular group, of dimension less than six. Given such a representation, it is shown that the associated graded complex linear space of vector-valued modular forms is a free module over the ring of integral weight modular forms for the full modular group, whose rank is equal to the dimension of the given representation. An explicit basis is computed for the module structure in each case, and this basis is used to compute the Hilbert-Poincare series associated to each graded space.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.