Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic Analysis of Generative Semi-Supervised Learning

Published 26 Feb 2010 in cs.LG | (1003.0024v1)

Abstract: Semisupervised learning has emerged as a popular framework for improving modeling accuracy while controlling labeling cost. Based on an extension of stochastic composite likelihood we quantify the asymptotic accuracy of generative semi-supervised learning. In doing so, we complement distribution-free analysis by providing an alternative framework to measure the value associated with different labeling policies and resolve the fundamental question of how much data to label and in what manner. We demonstrate our approach with both simulation studies and real world experiments using naive Bayes for text classification and MRFs and CRFs for structured prediction in NLP.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.