Bubbles of Nothing in Flux Compactifications (1002.4408v2)
Abstract: We construct a simple AdS_4 x S1 flux compactification stabilized by a complex scalar field winding the extra dimension and demonstrate an instability via nucleation of a bubble of nothing. This occurs when the Kaluza -- Klein dimension degenerates to a point, defining the bubble surface. Because the extra dimension is stabilized by a flux, the bubble surface must be charged, in this case under the axionic part of the complex scalar. This smooth geometry can be seen as a de Sitter topological defect with asymptotic behavior identical to the pure compactification. We discuss how a similar construction can be implemented in more general Freund -- Rubin compactifications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.