Papers
Topics
Authors
Recent
2000 character limit reached

Gossip Algorithms for Convex Consensus Optimization over Networks

Published 11 Feb 2010 in math.OC, cs.DC, and cs.SY | (1002.2283v3)

Abstract: In many applications, nodes in a network desire not only a consensus, but an optimal one. To date, a family of subgradient algorithms have been proposed to solve this problem under general convexity assumptions. This paper shows that, for the scalar case and by assuming a bit more, novel non-gradient-based algorithms with appealing features can be constructed. Specifically, we develop Pairwise Equalizing (PE) and Pairwise Bisectioning (PB), two gossip algorithms that solve unconstrained, separable, convex consensus optimization problems over undirected networks with time-varying topologies, where each local function is strictly convex, continuously differentiable, and has a minimizer. We show that PE and PB are easy to implement, bypass limitations of the subgradient algorithms, and produce switched, nonlinear, networked dynamical systems that admit a common Lyapunov function and asymptotically converge. Moreover, PE generalizes the well-known Pairwise Averaging and Randomized Gossip Algorithm, while PB relaxes a requirement of PE, allowing nodes to never share their local functions.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.