Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Candidacy Reduction For Frequent Pattern Mining (1001.2275v1)

Published 13 Jan 2010 in cs.DB

Abstract: Certainly, nowadays knowledge discovery or extracting knowledge from large amount of data is a desirable task in competitive businesses. Data mining is a main step in knowledge discovery process. Meanwhile frequent patterns play central role in data mining tasks such as clustering, classification, and association analysis. Identifying all frequent patterns is the most time consuming process due to a massive number of candidate patterns. For the past decade there have been an increasing number of efficient algorithms to mine the frequent patterns. However reducing the number of candidate patterns and comparisons for support counting are still two problems in this field which have made the frequent pattern mining one of the active research themes in data mining. A reasonable solution is identifying a small candidate pattern set from which can generate all frequent patterns. In this paper, a method is proposed based on a new candidate set called candidate head set or H which forms a small set of candidate patterns. The experimental results verify the accuracy of the proposed method and reduction of the number of candidate patterns and comparisons.

Citations (5)

Summary

We haven't generated a summary for this paper yet.