Papers
Topics
Authors
Recent
2000 character limit reached

Multi-path Probabilistic Available Bandwidth Estimation through Bayesian Active Learning

Published 6 Jan 2010 in cs.NI and cs.LG | (1001.1009v1)

Abstract: Knowing the largest rate at which data can be sent on an end-to-end path such that the egress rate is equal to the ingress rate with high probability can be very practical when choosing transmission rates in video streaming or selecting peers in peer-to-peer applications. We introduce probabilistic available bandwidth, which is defined in terms of ingress rates and egress rates of traffic on a path, rather than in terms of capacity and utilization of the constituent links of the path like the standard available bandwidth metric. In this paper, we describe a distributed algorithm, based on a probabilistic graphical model and Bayesian active learning, for simultaneously estimating the probabilistic available bandwidth of multiple paths through a network. Our procedure exploits the fact that each packet train provides information not only about the path it traverses, but also about any path that shares a link with the monitored path. Simulations and PlanetLab experiments indicate that this process can dramatically reduce the number of probes required to generate accurate estimates.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.