Papers
Topics
Authors
Recent
2000 character limit reached

Abstract Answer Set Solvers with Learning

Published 6 Jan 2010 in cs.AI and cs.LO | (1001.0820v1)

Abstract: Nieuwenhuis, Oliveras, and Tinelli (2006) showed how to describe enhancements of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, instead of pseudocode. We design a similar framework for several algorithms that generate answer sets for logic programs: Smodels, Smodels-cc, Asp-Sat with Learning (Cmodels), and a newly designed and implemented algorithm Sup. This approach to describing answer set solvers makes it easier to prove their correctness, to compare them, and to design new systems.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.