Exploration of Periodically Varying Graphs (0909.4369v1)
Abstract: We study the computability and complexity of the exploration problem in a class of highly dynamic graphs: periodically varying (PV) graphs, where the edges exist only at some (unknown) times defined by the periodic movements of carriers. These graphs naturally model highly dynamic infrastructure-less networks such as public transports with fixed timetables, low earth orbiting (LEO) satellite systems, security guards' tours, etc. We establish necessary conditions for the problem to be solved. We also derive lower bounds on the amount of time required in general, as well as for the PV graphs defined by restricted classes of carriers movements: simple routes, and circular routes. We then prove that the limitations on computability and complexity we have established are indeed tight. In fact we prove that all necessary conditions are also sufficient and all lower bounds on costs are tight. We do so constructively presenting two worst case optimal solution algorithms, one for anonymous systems, and one for those with distinct nodes ids. An added benefit is that the algorithms are rather simple.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.