Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Unlabeled Data to Enhance Ensemble Diversity (0909.3593v2)

Published 19 Sep 2009 in cs.LG and cs.AI

Abstract: Ensemble learning aims to improve generalization ability by using multiple base learners. It is well-known that to construct a good ensemble, the base learners should be accurate as well as diverse. In this paper, unlabeled data is exploited to facilitate ensemble learning by helping augment the diversity among the base learners. Specifically, a semi-supervised ensemble method named UDEED is proposed. Unlike existing semi-supervised ensemble methods where error-prone pseudo-labels are estimated for unlabeled data to enlarge the labeled data to improve accuracy, UDEED works by maximizing accuracies of base learners on labeled data while maximizing diversity among them on unlabeled data. Experiments show that UDEED can effectively utilize unlabeled data for ensemble learning and is highly competitive to well-established semi-supervised ensemble methods.

Citations (73)

Summary

We haven't generated a summary for this paper yet.