Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convergent Online Single Time Scale Actor Critic Algorithm (0909.2934v1)

Published 16 Sep 2009 in cs.LG and cs.AI

Abstract: Actor-Critic based approaches were among the first to address reinforcement learning in a general setting. Recently, these algorithms have gained renewed interest due to their generality, good convergence properties, and possible biological relevance. In this paper, we introduce an online temporal difference based actor-critic algorithm which is proved to converge to a neighborhood of a local maximum of the average reward. Linear function approximation is used by the critic in order estimate the value function, and the temporal difference signal, which is passed from the critic to the actor. The main distinguishing feature of the present convergence proof is that both the actor and the critic operate on a similar time scale, while in most current convergence proofs they are required to have very different time scales in order to converge. Moreover, the same temporal difference signal is used to update the parameters of both the actor and the critic. A limitation of the proposed approach, compared to results available for two time scale convergence, is that convergence is guaranteed only to a neighborhood of an optimal value, rather to an optimal value itself. The single time scale and identical temporal difference signal used by the actor and the critic, may provide a step towards constructing more biologically realistic models of reinforcement learning in the brain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. D. Di Castro (12 papers)
  2. R. Meir (2 papers)

Summary

We haven't generated a summary for this paper yet.