Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anonymization with Worst-Case Distribution-Based Background Knowledge (0909.1127v1)

Published 7 Sep 2009 in cs.DB and cs.CR

Abstract: Background knowledge is an important factor in privacy preserving data publishing. Distribution-based background knowledge is one of the well studied background knowledge. However, to the best of our knowledge, there is no existing work considering the distribution-based background knowledge in the worst case scenario, by which we mean that the adversary has accurate knowledge about the distribution of sensitive values according to some tuple attributes. Considering this worst case scenario is essential because we cannot overlook any breaching possibility. In this paper, we propose an algorithm to anonymize dataset in order to protect individual privacy by considering this background knowledge. We prove that the anonymized datasets generated by our proposed algorithm protects individual privacy. Our empirical studies show that our method preserves high utility for the published data at the same time.

Summary

We haven't generated a summary for this paper yet.