Papers
Topics
Authors
Recent
2000 character limit reached

Deterministic Construction of Compressed Sensing Matrices using BCH Codes

Published 5 Aug 2009 in cs.IT and math.IT | (0908.0619v2)

Abstract: In this paper we introduce deterministic $m\times n$ RIP fulfilling $\pm 1$ matrices of order $k$ such that $\frac{\log m}{\log k}\approx \frac{\log(\log_2 n)}{\log(\log_2 k)}$. The columns of these matrices are binary BCH code vectors that their zeros are replaced with -1 (excluding the normalization factor). The samples obtained by these matrices can be easily converted to the original sparse signal; more precisely, for the noiseless samples, the simple Matching Pursuit technique, even with less than the common computational complexity, exactly reconstructs the sparse signal. In addition, using Devore's binary matrices, we expand the binary scheme to matrices with ${0,1,-1}$ elements.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.