Self-adaptive web intrusion detection system
Abstract: The evolution of the web server contents and the emergence of new kinds of intrusions make necessary the adaptation of the intrusion detection systems (IDS). Nowadays, the adaptation of the IDS requires manual -- tedious and unreactive -- actions from system administrators. In this paper, we present a self-adaptive intrusion detection system which relies on a set of local model-based diagnosers. The redundancy of diagnoses is exploited, online, by a meta-diagnoser to check the consistency of computed partial diagnoses, and to trigger the adaptation of defective diagnoser models (or signatures) in case of inconsistency. This system is applied to the intrusion detection from a stream of HTTP requests. Our results show that our system 1) detects intrusion occurrences sensitively and precisely, 2) accurately self-adapts diagnoser model, thus improving its detection accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.