Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recommender Systems for the Conference Paper Assignment Problem (0906.4044v1)

Published 22 Jun 2009 in cs.IR and cs.AI

Abstract: Conference paper assignment, i.e., the task of assigning paper submissions to reviewers, presents multi-faceted issues for recommender systems research. Besides the traditional goal of predicting `who likes what?', a conference management system must take into account aspects such as: reviewer capacity constraints, adequate numbers of reviews for papers, expertise modeling, conflicts of interest, and an overall distribution of assignments that balances reviewer preferences with conference objectives. Among these, issues of modeling preferences and tastes in reviewing have traditionally been studied separately from the optimization of paper-reviewer assignment. In this paper, we present an integrated study of both these aspects. First, due to the paucity of data per reviewer or per paper (relative to other recommender systems applications) we show how we can integrate multiple sources of information to learn paper-reviewer preference models. Second, our models are evaluated not just in terms of prediction accuracy but in terms of the end-assignment quality. Using a linear programming-based assignment optimization formulation, we show how our approach better explores the space of unsupplied assignments to maximize the overall affinities of papers assigned to reviewers. We demonstrate our results on real reviewer preference data from the IEEE ICDM 2007 conference.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Don Conry (1 paper)
  2. Yehuda Koren (4 papers)
  3. Naren Ramakrishnan (72 papers)
Citations (63)