Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduling with Outliers (0906.2020v1)

Published 10 Jun 2009 in cs.DS

Abstract: In classical scheduling problems, we are given jobs and machines, and have to schedule all the jobs to minimize some objective function. What if each job has a specified profit, and we are no longer required to process all jobs -- we can schedule any subset of jobs whose total profit is at least a (hard) target profit requirement, while still approximately minimizing the objective function? We refer to this class of problems as scheduling with outliers. This model was initiated by Charikar and Khuller (SODA'06) on the minimum max-response time in broadcast scheduling. We consider three other well-studied scheduling objectives: the generalized assignment problem, average weighted completion time, and average flow time, and provide LP-based approximation algorithms for them. For the minimum average flow time problem on identical machines, we give a logarithmic approximation algorithm for the case of unit profits based on rounding an LP relaxation; we also show a matching integrality gap. For the average weighted completion time problem on unrelated machines, we give a constant factor approximation. The algorithm is based on randomized rounding of the time-indexed LP relaxation strengthened by the knapsack-cover inequalities. For the generalized assignment problem with outliers, we give a simple reduction to GAP without outliers to obtain an algorithm whose makespan is within 3 times the optimum makespan, and whose cost is at most (1 + \epsilon) times the optimal cost.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Anupam Gupta (131 papers)
  2. Ravishankar Krishnaswamy (22 papers)
  3. Amit Kumar (224 papers)
  4. Danny Segev (18 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.