Papers
Topics
Authors
Recent
2000 character limit reached

Resolving mixing in Smoothed Particle Hydrodynamics

Published 3 Jun 2009 in astro-ph.CO, astro-ph.EP, and astro-ph.GA | (0906.0774v2)

Abstract: Standard formulations of smoothed particle hydrodynamics (SPH) are unable to resolve mixing at fluid boundaries. We use an error and stability analysis of the generalised SPH equations of motion to prove that this is due to two distinct problems. The first is a leading order error in the momentum equation. This should decrease with increasing neighbour number, but does not because numerical instabilities cause the kernel to be irregularly sampled. We identify two important instabilities: the clumping instability and the banding instability, and we show that both are cured by a suitable choice of kernel. The second problem is the local mixing instability (LMI). This occurs as particles attempt to mix on the kernel scale, but are unable to due to entropy conservation. The result is a pressure discontinuity at boundaries that pushes fluids of different entropy apart. We cure the LMI by using a weighted density estimate that ensures that pressures are single valued throughout the flow. This also gives a better volume estimate for the particles, reducing errors in the continuity and momentum equations. We demonstrate mixing in our new Optimised Smoothed Particle Hydrodynamics (OSPH) scheme using a Kelvin Helmholtz instability (KHI) test with density contrast 1:2, and the 'blob test' - a 1:10 density ratio gas sphere in a wind tunnel - finding excellent agreement between OSPH and Eulerian codes.

Citations (146)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.