Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mining Generalized Patterns from Large Databases using Ontologies

Published 28 May 2009 in cs.AI, cs.DB, and cs.DM | (0905.4713v1)

Abstract: Formal Concept Analysis (FCA) is a mathematical theory based on the formalization of the notions of concept and concept hierarchies. It has been successfully applied to several Computer Science fields such as data mining,software engineering, and knowledge engineering, and in many domains like medicine, psychology, linguistics and ecology. For instance, it has been exploited for the design, mapping and refinement of ontologies. In this paper, we show how FCA can benefit from a given domain ontology by analyzing the impact of a taxonomy (on objects and/or attributes) on the resulting concept lattice. We willmainly concentrate on the usage of a taxonomy to extract generalized patterns (i.e., knowledge generated from data when elements of a given domain ontology are used) in the form of concepts and rules, and improve navigation through these patterns. To that end, we analyze three generalization cases and show their impact on the size of the generalized pattern set. Different scenarios of simultaneous generalizations on both objects and attributes are also discussed

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.