Papers
Topics
Authors
Recent
2000 character limit reached

Topology and higher dimensional representations (0905.3586v2)

Published 22 May 2009 in hep-lat

Abstract: SU(3) gauge theory in the 2-index symmetric (sextet) and fundamental representations is considered in symmetric and periodic boxes. Using the overlap formulation in the quenched approximation it is shown that the topological charge obtained from the sextet index theorem always leads to an integer value and agrees with the charge obtained from the fundamental index theorem in the continuum. At larger lattice spacing configurations exist with fractional topological charge if the sextet index is used but these are lattice artifacts and the probability of finding such a configuration rapidly approaches zero. By considering the decomposition of the sextet representation with respect to an SU(2) subgroup it is shown that the SU(2) adjoint index theorem leads to integer charge as well. We conclude that the non-zero value of the bilinear gaugino condensate in N=1 super-Yang-Mills theory cannot be attributed to configurations with fractional topological charge once periodic boundary conditions are imposed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 90 likes about this paper.