Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition

Published 15 May 2009 in cs.CG and cs.DS | (0905.2605v2)

Abstract: A spanner graph on a set of points in $Rd$ contains a shortest path between any pair of points with length at most a constant factor of their Euclidean distance. In this paper we investigate new models and aim to interpret why good spanners 'emerge' in reality, when they are clearly built in pieces by agents with their own interests and the construction is not coordinated. Our main result is to show that if edges are built in an arbitrary order but an edge is built if and only if its endpoints are not 'close' to the endpoints of an existing edge, the graph is a $(1 + \eps)$-spanner with a linear number of edges, constant average degree, and the total edge length as a small logarithmic factor of the cost of the minimum spanning tree. As a side product, we show a simple greedy algorithm for constructing optimal size well-separated pair decompositions that may be of interest on its own.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.