Approximation Algorithms for Key Management in Secure Multicast
Abstract: Many data dissemination and publish-subscribe systems that guarantee the privacy and authenticity of the participants rely on symmetric key cryptography. An important problem in such a system is to maintain the shared group key as the group membership changes. We consider the problem of determining a key hierarchy that minimizes the average communication cost of an update, given update frequencies of the group members and an edge-weighted undirected graph that captures routing costs. We first present a polynomial-time approximation scheme for minimizing the average number of multicast messages needed for an update. We next show that when routing costs are considered, the problem is NP-hard even when the underlying routing network is a tree network or even when every group member has the same update frequency. Our main result is a polynomial time constant-factor approximation algorithm for the general case where the routing network is an arbitrary weighted graph and group members have nonuniform update frequencies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.