Papers
Topics
Authors
Recent
2000 character limit reached

The hardness of the independence and matching clutter of a graph

Published 28 Mar 2009 in cs.DM and math.CO | (0903.4907v4)

Abstract: A {\it clutter} (or {\it antichain} or {\it Sperner family}) $L$ is a pair $(V,E)$, where $V$ is a finite set and $E$ is a family of subsets of $V$ none of which is a subset of another. Usually, the elements of $V$ are called {\it vertices} of $L$, and the elements of $E$ are called {\it edges} of $L$. A subset $s_e$ of an edge $e$ of a clutter is called {\it recognizing} for $e$, if $s_e$ is not a subset of another edge. The {\it hardness} of an edge $e$ of a clutter is the ratio of the size of $e\textrm{'s}$ smallest recognizing subset to the size of $e$. The hardness of a clutter is the maximum hardness of its edges. We study the hardness of clutters arising from independent sets and matchings of graphs.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.