On $p$-adic Classification
Abstract: A $p$-adic modification of the split-LBG classification method is presented in which first clusterings and then cluster centers are computed which locally minimise an energy function. The outcome for a fixed dataset is independent of the prime number $p$ with finitely many exceptions. The methods are applied to the construction of $p$-adic classifiers in the context of learning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.