Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Discarded Samples for Tighter Estimation of Multiple-Set Aggregates

Published 3 Mar 2009 in cs.DB and cs.IR | (0903.0625v1)

Abstract: Many datasets such as market basket data, text or hypertext documents, and sensor observations recorded in different locations or time periods, are modeled as a collection of sets over a ground set of keys. We are interested in basic aggregates such as the weight or selectivity of keys that satisfy some selection predicate defined over keys' attributes and membership in particular sets. This general formulation includes basic aggregates such as the Jaccard coefficient, Hamming distance, and association rules. On massive data sets, exact computation can be inefficient or infeasible. Sketches based on coordinated random samples are classic summaries that support approximate query processing. Queries are resolved by generating a sketch (sample) of the union of sets used in the predicate from the sketches these sets and then applying an estimator to this union-sketch. We derive novel tighter (unbiased) estimators that leverage sampled keys that are present in the union of applicable sketches but excluded from the union sketch. We establish analytically that our estimators dominate estimators applied to the union-sketch for {\em all queries and data sets}. Empirical evaluation on synthetic and real data reveals that on typical applications we can expect a 25%-4 fold reduction in estimation error.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.