Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum distance regression model checking with Berkson measurement errors (0902.4827v1)

Published 27 Feb 2009 in math.ST and stat.TH

Abstract: Lack-of-fit testing of a regression model with Berkson measurement error has not been discussed in the literature to date. To fill this void, we propose a class of tests based on minimized integrated square distances between a nonparametric regression function estimator and the parametric model being fitted. We prove asymptotic normality of these test statistics under the null hypothesis and that of the corresponding minimum distance estimators under minimal conditions on the model being fitted. We also prove consistency of the proposed tests against a class of fixed alternatives and obtain their asymptotic power against a class of local alternatives orthogonal to the null hypothesis. These latter results are new even when there is no measurement error. A simulation that is included shows very desirable finite sample behavior of the proposed inference procedures.

Citations (29)

Summary

We haven't generated a summary for this paper yet.