Papers
Topics
Authors
Recent
2000 character limit reached

Information-Theoretic Bounds for Multiround Function Computation in Collocated Networks

Published 15 Jan 2009 in cs.IT and math.IT | (0901.2356v3)

Abstract: We study the limits of communication efficiency for function computation in collocated networks within the framework of multi-terminal block source coding theory. With the goal of computing a desired function of sources at a sink, nodes interact with each other through a sequence of error-free, network-wide broadcasts of finite-rate messages. For any function of independent sources, we derive a computable characterization of the set of all feasible message coding rates - the rate region - in terms of single-letter information measures. We show that when computing symmetric functions of binary sources, the sink will inevitably learn certain additional information which is not demanded in computing the function. This conceptual understanding leads to new improved bounds for the minimum sum-rate. The new bounds are shown to be orderwise better than those based on cut-sets as the network scales. The scaling law of the minimum sum-rate is explored for different classes of symmetric functions and source parameters.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.