Belief functions on lattices
Abstract: We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.