2000 character limit reached
Document stream clustering: experimenting an incremental algorithm and AR-based tools for highlighting dynamic trends
Published 3 Nov 2008 in cs.AI | (0811.0340v1)
Abstract: We address here two major challenges presented by dynamic data mining: 1) the stability challenge: we have implemented a rigorous incremental density-based clustering algorithm, independent from any initial conditions and ordering of the data-vectors stream, 2) the cognitive challenge: we have implemented a stringent selection process of association rules between clusters at time t-1 and time t for directly generating the main conclusions about the dynamics of a data-stream. We illustrate these points with an application to a two years and 2600 documents scientific information database.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.