Energy Scaling Laws for Distributed Inference in Random Fusion Networks (0809.0686v3)
Abstract: The energy scaling laws of multihop data fusion networks for distributed inference are considered. The fusion network consists of randomly located sensors distributed i.i.d. according to a general spatial distribution in an expanding region. Among the class of data fusion schemes that enable optimal inference at the fusion center for Markov random field (MRF) hypotheses, the scheme with minimum average energy consumption is bounded below by average energy of fusion along the minimum spanning tree, and above by a suboptimal scheme, referred to as Data Fusion for Markov Random Fields (DFMRF). Scaling laws are derived for the optimal and suboptimal fusion policies. It is shown that the average asymptotic energy of the DFMRF scheme is finite for a class of MRF models.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.