Game Theory with Costly Computation (0809.0024v1)
Abstract: We develop a general game-theoretic framework for reasoning about strategic agents performing possibly costly computation. In this framework, many traditional game-theoretic results (such as the existence of a Nash equilibrium) no longer hold. Nevertheless, we can use the framework to provide psychologically appealing explanations to observed behavior in well-studied games (such as finitely repeated prisoner's dilemma and rock-paper-scissors). Furthermore, we provide natural conditions on games sufficient to guarantee that equilibria exist. As an application of this framework, we consider a notion of game-theoretic implementation of mediators in computational games. We show that a special case of this notion is equivalent to a variant of the traditional cryptographic definition of protocol security; this result shows that, when taking computation into account, the two approaches used for dealing with "deviating" players in two different communities -- Nash equilibrium in game theory and zero-knowledge "simulation" in cryptography -- are intimately related.