Papers
Topics
Authors
Recent
Search
2000 character limit reached

Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games

Published 20 Aug 2008 in cs.GT | (0808.2801v1)

Abstract: We show that there is a polynomial-time approximation scheme for computing Nash equilibria in anonymous games with any fixed number of strategies (a very broad and important class of games), extending the two-strategy result of Daskalakis and Papadimitriou 2007. The approximation guarantee follows from a probabilistic result of more general interest: The distribution of the sum of n independent unit vectors with values ranging over {e1, e2, ...,ek}, where ei is the unit vector along dimension i of the k-dimensional Euclidean space, can be approximated by the distribution of the sum of another set of independent unit vectors whose probabilities of obtaining each value are multiples of 1/z for some integer z, and so that the variational distance of the two distributions is at most eps, where eps is bounded by an inverse polynomial in z and a function of k, but with no dependence on n. Our probabilistic result specifies the construction of a surprisingly sparse eps-cover -- under the total variation distance -- of the set of distributions of sums of independent unit vectors, which is of interest on its own right.

Citations (48)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.