Intrusion Detection in Mobile Ad Hoc Networks Using Classification Algorithms (0807.2049v1)
Abstract: In this paper we present the design and evaluation of intrusion detection models for MANETs using supervised classification algorithms. Specifically, we evaluate the performance of the MultiLayer Perceptron (MLP), the Linear classifier, the Gaussian Mixture Model (GMM), the Naive Bayes classifier and the Support Vector Machine (SVM). The performance of the classification algorithms is evaluated under different traffic conditions and mobility patterns for the Black Hole, Forging, Packet Dropping, and Flooding attacks. The results indicate that Support Vector Machines exhibit high accuracy for almost all simulated attacks and that Packet Dropping is the hardest attack to detect.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.