The quest for rings on bipolar scales (0804.1270v1)
Abstract: We consider the interval $]{-1},1[$ and intend to endow it with an algebraic structure like a ring. The motivation lies in decision making, where scales that are symmetric w.r.t. 0 are needed in order to represent a kind of symmetry in the behaviour of the decision maker. A former proposal due to Grabisch was based on maximum and minimum. In this paper, we propose to build our structure on t-conorms and t-norms, and we relate this construction to uninorms. We show that the only way to build a group is to use strict t-norms, and that there is no way to build a ring. Lastly, we show that the main result of this paper is connected to the theory of ordered Abelian groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.