Papers
Topics
Authors
Recent
2000 character limit reached

Statistical-mechanics approach to a reinforcement learning model with memory (0804.0742v3)

Published 4 Apr 2008 in cond-mat.stat-mech and cs.GT

Abstract: We introduce a two-player model of reinforcement learning with memory. Past actions of an iterated game are stored in a memory and used to determine player's next action. To examine the behaviour of the model some approximate methods are used and confronted against numerical simulations and exact master equation. When the length of memory of players increases to infinity the model undergoes an absorbing-state phase transition. Performance of examined strategies is checked in the prisoner' dilemma game. It turns out that it is advantageous to have a large memory in symmetric games, but it is better to have a short memory in asymmetric ones.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.