Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Fusion Trees for Detection: Does Architecture Matter? (0803.2337v1)

Published 16 Mar 2008 in cs.IT and math.IT

Abstract: We consider the problem of decentralized detection in a network consisting of a large number of nodes arranged as a tree of bounded height, under the assumption of conditionally independent, identically distributed observations. We characterize the optimal error exponent under a Neyman-Pearson formulation. We show that the Type II error probability decays exponentially fast with the number of nodes, and the optimal error exponent is often the same as that corresponding to a parallel configuration. We provide sufficient, as well as necessary, conditions for this to happen. For those networks satisfying the sufficient conditions, we propose a simple strategy that nearly achieves the optimal error exponent, and in which all non-leaf nodes need only send 1-bit messages.

Citations (81)

Summary

We haven't generated a summary for this paper yet.