Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extreme Learning Machine for land cover classification

Published 11 Feb 2008 in cs.NE and cs.CV | (0802.1412v1)

Abstract: This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (England) was used to judge the suitability of extreme learning machine for remote sensing classifications. A back propagation neural network was used to compare its performance in term of classification accuracy and computational cost. Results suggest that the extreme learning machine perform equally well to back propagation neural network in term of classification accuracy with this data set. The computational cost using extreme learning machine is very small in comparison to back propagation neural network.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.