Minimum Entropy Orientations (0802.1237v2)
Abstract: We study graph orientations that minimize the entropy of the in-degree sequence. The problem of finding such an orientation is an interesting special case of the minimum entropy set cover problem previously studied by Halperin and Karp [Theoret. Comput. Sci., 2005] and by the current authors [Algorithmica, to appear]. We prove that the minimum entropy orientation problem is NP-hard even if the graph is planar, and that there exists a simple linear-time algorithm that returns an approximate solution with an additive error guarantee of 1 bit. This improves on the only previously known algorithm which has an additive error guarantee of log_2 e bits (approx. 1.4427 bits).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.