Papers
Topics
Authors
Recent
2000 character limit reached

Worst-Case Hermite-Korkine-Zolotarev Reduced Lattice Bases

Published 22 Jan 2008 in math.NT, cs.CC, and cs.CR | (0801.3331v2)

Abstract: The Hermite-Korkine-Zolotarev reduction plays a central role in strong lattice reduction algorithms. By building upon a technique introduced by Ajtai, we show the existence of Hermite-Korkine-Zolotarev reduced bases that are arguably least reduced. We prove that for such bases, Kannan's algorithm solving the shortest lattice vector problem requires $d{\frac{d}{2\e}(1+o(1))}$ bit operations in dimension $d$. This matches the best complexity upper bound known for this algorithm. These bases also provide lower bounds on Schnorr's constants $\alpha_d$ and $\beta_d$ that are essentially equal to the best upper bounds. Finally, we also show the existence of particularly bad bases for Schnorr's hierarchy of reductions.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.