Estimating Signals with Finite Rate of Innovation from Noisy Samples: A Stochastic Algorithm
Abstract: As an example of the recently-introduced concept of rate of innovation, signals that are linear combinations of a finite number of Diracs per unit time can be acquired by linear filtering followed by uniform sampling. However, in reality, samples are rarely noiseless. In this paper, we introduce a novel stochastic algorithm to reconstruct a signal with finite rate of innovation from its noisy samples. Even though variants of this problem has been approached previously, satisfactory solutions are only available for certain classes of sampling kernels, for example kernels which satisfy the Strang-Fix condition. In this paper, we consider the infinite-support Gaussian kernel, which does not satisfy the Strang-Fix condition. Other classes of kernels can be employed. Our algorithm is based on Gibbs sampling, a Markov chain Monte Carlo (MCMC) method. Extensive numerical simulations demonstrate the accuracy and robustness of our algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.