Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computing the Tutte polynomial in vertex-exponential time

Published 16 Nov 2007 in cs.DS, cond-mat.stat-mech, and math.CO | (0711.2585v4)

Abstract: The deletion--contraction algorithm is perhaps the most popular method for computing a host of fundamental graph invariants such as the chromatic, flow, and reliability polynomials in graph theory, the Jones polynomial of an alternating link in knot theory, and the partition functions of the models of Ising, Potts, and Fortuin--Kasteleyn in statistical physics. Prior to this work, deletion--contraction was also the fastest known general-purpose algorithm for these invariants, running in time roughly proportional to the number of spanning trees in the input graph. Here, we give a substantially faster algorithm that computes the Tutte polynomial--and hence, all the aforementioned invariants and more--of an arbitrary graph in time within a polynomial factor of the number of connected vertex sets. The algorithm actually evaluates a multivariate generalization of the Tutte polynomial by making use of an identity due to Fortuin and Kasteleyn. We also provide a polynomial-space variant of the algorithm and give an analogous result for Chung and Graham's cover polynomial. An implementation of the algorithm outperforms deletion--contraction also in practice.

Citations (76)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.