Papers
Topics
Authors
Recent
2000 character limit reached

Decision tree modeling with relational views

Published 10 May 2007 in cs.DB | (0705.1455v1)

Abstract: Data mining is a useful decision support technique that can be used to discover production rules in warehouses or corporate data. Data mining research has made much effort to apply various mining algorithms efficiently on large databases. However, a serious problem in their practical application is the long processing time of such algorithms. Nowadays, one of the key challenges is to integrate data mining methods within the framework of traditional database systems. Indeed, such implementations can take advantage of the efficiency provided by SQL engines. In this paper, we propose an integrating approach for decision trees within a classical database system. In other words, we try to discover knowledge from relational databases, in the form of production rules, via a procedure embedding SQL queries. The obtained decision tree is defined by successive, related relational views. Each view corresponds to a given population in the underlying decision tree. We selected the classical Induction Decision Tree (ID3) algorithm to build the decision tree. To prove that our implementation of ID3 works properly, we successfully compared the output of our procedure with the output of an existing and validated data mining software, SIPINA. Furthermore, since our approach is tuneable, it can be generalized to any other similar decision tree-based method.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.