Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computing modular polynomials in quasi-linear time

Published 24 Apr 2007 in math.NT and cs.CC | (0704.3177v2)

Abstract: We analyse and compare the complexity of several algorithms for computing modular polynomials. We show that an algorithm relying on floating point evaluation of modular functions and on interpolation, which has received little attention in the literature, has a complexity that is essentially (up to logarithmic factors) linear in the size of the computed polynomials. In particular, it obtains the classical modular polynomials $\Phi_\ell$ of prime level $\ell$ in time O (\ell3 \log4 \ell \log \log \ell). Besides treating modular polynomials for $\Gamma0 (\ell)$, which are an important ingredient in many algorithms dealing with isogenies of elliptic curves, the algorithm is easily adapted to more general situations. Composite levels are handled just as easily as prime levels, as well as polynomials between a modular function and its transform of prime level, such as the Schl\"afli polynomials and their generalisations. Our distributed implementation of the algorithm confirms the theoretical analysis by computing modular equations of record level around 10000 in less than two weeks on ten processors.

Citations (59)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.