Papers
Topics
Authors
Recent
2000 character limit reached

Inapproximability of Maximum Weighted Edge Biclique and Its Applications

Published 3 Apr 2007 in cs.CC and cs.DS | (0704.0468v2)

Abstract: Given a bipartite graph $G = (V_1,V_2,E)$ where edges take on {\it both} positive and negative weights from set $\mathcal{S}$, the {\it maximum weighted edge biclique} problem, or $\mathcal{S}$-MWEB for short, asks to find a bipartite subgraph whose sum of edge weights is maximized. This problem has various applications in bioinformatics, machine learning and databases and its (in)approximability remains open. In this paper, we show that for a wide range of choices of $\mathcal{S}$, specifically when $| \frac{\min\mathcal{S}} {\max \mathcal{S}} | \in \Omega(\eta{\delta-1/2}) \cap O(\eta{1/2-\delta})$ (where $\eta = \max{|V_1|, |V_2|}$, and $\delta \in (0,1/2]$), no polynomial time algorithm can approximate $\mathcal{S}$-MWEB within a factor of $n{\epsilon}$ for some $\epsilon > 0$ unless $\mathsf{RP = NP}$. This hardness result gives justification of the heuristic approaches adopted for various applied problems in the aforementioned areas, and indicates that good approximation algorithms are unlikely to exist. Specifically, we give two applications by showing that: 1) finding statistically significant biclusters in the SAMBA model, proposed in \cite{Tan02} for the analysis of microarray data, is $n{\epsilon}$-inapproximable; and 2) no polynomial time algorithm exists for the Minimum Description Length with Holes problem \cite{Bu05} unless $\mathsf{RP=NP}$.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.